
Electrode Polarization and the Macdonald/Coelho Model 

 

Electrode polarization occurs at low frequencies, where the transporting ions have 

sufficient time to polarize at the blocking electrodes during the cycle.  That polarization 

manifests itself in (1) an increase in the effective capacitance of the cell (increasing the 

dielectric constant) and (2) a decrease in the in-phase part of the conductivity, as the 

polarizing ions reduce the field experienced by the transporting ions.  The natural time 

scale for conduction is the time scale where ion motion becomes diffusive  
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where s  is the static relative permittivity of the sample, 0  is the permittivity of vacuum 

and DC  is the DC conductivity, evaluated from a roughly 3-decade frequency range 

where the in-phase part of the conductivity     0' "       is independent of 

frequency.  At frequencies below 1/   all ions participate equally in conduction and the 

in-phase part of the conductivity '  becomes independent of frequency.   At frequencies 

far below 1/   the conducting ions start to polarize at the electrodes and fully polarize at 

the electrode polarization time scale 
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where EP  is the (considerably larger) effective permittivity after the electrode 

polarization is complete.  The Macdonald/Coelho model treats electrode polarization as a 

simple Debye relaxation with loss tangent 
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In practice, the conduction time scale  and electrode polarization time scale EP  are 

calculated from fitting the measured loss tangent associated with electrode polarization to 

Eq. (3).  The peak in tanδ occurs at the geometric mean of  and EP . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Macdonald/Coelho model then determines the number density of conducting ions p 

and their mobility  from EP   
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where  2
0/ 4B sl e kT   is the Bjerrum length, L is the spacing between electrodes, e is 

the elementary charge, k is the Boltzmann constant and T is absolute temperature.  The 

time scale for electrode polarization EP  is proportional to the electrode spacing L in the 

Macdonald/Coelho model, making the number density of conducting ions p and their 

mobility  material properties that are independent of L.  A material property relevant for 

actuation is /EP L , obtained from Eq. (5). 
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Here we used Eq. (1) and the relation DC e p  , where e is the elementary ionic charge.  

For fast actuation, ion-conducting membranes need to be thin (small L) have high 

mobility  of conducting ions, and a high conducting ion content p. 

  Actuation can be modeled as an equivalent resistor-capacitor circuit, with the time 

scale for polarization (or charging) EP  = RC, where R is the resistance and C the 

capacitance of the equivalent circuit.  The actuation is created on time scale EP  by a 

build-up of conducting ions in the Stern layer (within the Debye length of the electrode).  

The charge Q built up in the Stern layer is directly proportional to the applied voltage V, 

as Q = CV = /EPV R .  With the resistance  / DCR L A , where A is the electrode 

surface area, we have a simple relation for the charge accumulation per unit of electrode  

surface area (charge density). 
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Hence, the material property /EP L  multiplied by the conductivity DC  determines the 

charge density at the electrode.  Combining Eqs. (6) and (7) writes the charge density in 

terms of the number density of conducting ions and the dielectric constant. 
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To increase the charge density of polarizing ions (and hence the strain in the actuator) we 

need membranes with large dielectric constant εs and large number density of conducting 

ions p. 

The above is based on linear response theory.  The Macdonald/Coelho model assumes 

that the build-up of ions near the electrode is sufficiently small that they do not interact 

with other ions near the electrode.  Nonlinear electrode polarization will occur when the 

polarizing ions start to interact with each other – when they are separated by the Bjerrum 

length on the electrode surface (where their Coulomb repulsion is the thermal energy). 
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The relevant dimensionless parameter is (from Eq. 7) ions per square Bjerrum length.  
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Or from Eq. 8  

 
2 3

2 0 1
4 16
sB B

B

pQl pleV
Vl

Ae kT kT

 


    (11) 

Since our typical ionomeric single-ion conductor, 100% sulfonated PEG600-Na at 65 oC 

has εs = 88, lB = 0.6 nm and p = 0.0002 nm-3, we expect  
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And nonlinearities should start when the applied voltage is of order 0.1 volt.  The data at 

left suggest that 

nonlinear effects 

are first seen 

between 0.1 and 

0.2 V, for a 200 

μm thick sample. 

The DC 

conductivity is 

independent of 

voltage to at least 

2V but EP is nonlinear (the low frequency drop in σ’ is the consequence of EP). 

The dimensionless parameter of Eqs. 10 and 11 is shown, along with conducting ion 

content p from Eq. 4, for two other ionomer systems with various counterions below. 
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All the above data were taken at 0.1 V amplitude with 100 μm sample thickness.  The 

data at left are for a sulfonated polyester ionomer sold by Aldrich as the Na-salt and ion 

exchanged with a variety of larger counterions.  The data at right are for a polyurethane 

carboxylate ionomer based on PEG600, made in the acid form and titrated with the 

appropriate base.  All of these data show 20.01 /( ) 0.1BQl Ae  , with the trend that larger 

counterions usually have higher conducting ion content and larger 2 /( )BQl Ae  but of 

course there are also differences in dielectric constant for these ionomers with different 

counterions and that changes the Bjerrum length in Eq. 11.  Collectively this suggests that 

0.1 V is safely linear response for all of these ions but that the onset voltage for nonlinear 

effects in electrode polarization will depend on the particular ionomer and counterion, 

through the conducting ion content and dielectric constant (Bjerrum length). 
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4.43 x 1020


