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Abstract

We study the viscosity of polystyrene sulfonate with sodium and tetrabutylammo-

nium counterions in aqueous and organic solvent media. We find that at low concentra-

tions, the Fuoss law (ηsp ∼ c1/2) is approximately obeyed, but at higher concentrations

an exponential dependence on the polymer volume fraction sets in. These findings are

discussed in terms of Fujita’s free volume theory.

Charged polymers display complex rheological properties, the understanding of which lags

behind that of neutral polymers.1–3 Literature studies on polyelectrolyte dynamics usually

focus on aqueous systems. While water is undoubtedly the most important solvent due to

its biological and industrial relevance, theories make predictions for the dependence of poly-

electrolyte properties on solvent dielectric constant3–6 which cannot be tested by studying

aqueous solutions. The narrow solubility of common polyelectrolytes in non-aqueous media

can be overcome by introducing organic counterions, which improve solubility in non-aqueous
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media.1,7,8 Most literature data deal with dilute or modestly concentrated solutions, but re-

cent studies have shown the emergence of unexpected behaviour at high concentrations,9–18

which are poorly understood.

In this letter, we study the viscosity of polystyrene sulfonate with sodium and tetrabuty-

lammonium (TBA) counterions in different solvents. We find that the specific viscosity of

solutions can be written as:

ηsp ≃
( c

c∗

)1/2

eAϕ (1)

where c∗ is the overlap concentration, which decreases with increasing dielectric constant of

the media, and A is a parameter that depends on the solvent.

The specific viscosity of NaPSS and TBAPSS in DI water is plotted as a function of

concentration (c), where c is expressed in moles of monomers per dm3 in Figure 1a. At low

concentrations, both polymers show similar viscosities, which follow the Fuoss law (ηsp ∼

c1/2), as indicated by the black line. For c ≳ 0.1 M, the two datasets diverge and the

ηsp ∼ c1/2 scaling is no longer obeyed. The Fuoss law, first established experimentally

for solutions below or not far above the overlap concentration in salt-free solvents20,21 was

derived theoretically by de Gennes and co-workers for the semidilute regime.22

The overlap concentration c∗ is estimated as c∗ ≃ 0.006 M by fitting the data with

ηsp ≥ 1 to ηsp = (c/c∗)1/2. In figure 1b, the specific viscosity normalised by (c/c∗)1/2 (i.e.

the black line in part a) is plotted as a function of polymer volume fraction. The relative

deviation from the Fuoss law is seen to be similar for the Na and TBA salts of PSS, and

to approximately follow an exponential form (see inset). An analogous plot using the mass

fraction (x) instead of the volume fraction (ϕ), shown in the supporting information gives

better agreement at low concentrations but greater deviation at high ones. The specific

viscosity for the two salts is approximately described by: ηsp ≃ (c/c∗)1/2e14ϕ. The term in

brackets corresponds to the scaling prediction and the exponential term is not, to the best

of our knowledge, directly predicted by any polyelectrolyte theory.3,5,23,24 We return to the

interpretation of this term below.
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Figure 1: a: specific viscosity of NaPSS and TBAPSS in water as a function of number
concentration of repeating units per unit volume. Line is scaling prediction (ηsp ∝ c1/2) with
the pre-factor as a fit parameter. b: ηsp normalised by scaling prediction (ηsp = (c/c∗)1/2 ≃
41c1/2) as a function of the polymer volume fraction (ϕ). Inset shows the data in log-lin
representation, line is exponential fit forced to 1 at ϕ = 0. Data for NaPSS are from19 and
refs. therein.

The specific viscosity of TBAPSS in different solvents is plotted as a function of con-

centration (c) in figure 2a. At low concentrations, solvents with high dielectric constants

display the highest specific viscosities, and the Fuoss law is followed. For the lower permit-

tivity solvents, the ηsp − c exponent displays values ≃ 0.6− 0.8. At high concentrations, the
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Figure 2: a: Specific viscosity of TBAPSS (N = 1354) solutions in different solvents, in-
dicated on the legend. b: Overlap concentration, calculated by fitting ηsp > 1 data to
ηsp = (c/c∗)1/2, as a function of solvent’s dielectric constant (ϵ). Line is a power-law fit
excluding the pyridine (ϵ ≃ 12) datum.

lower permittivity solvents display higher viscosities. The overlap concentration is plotted

as a function of dielectric constant in figure 2b. If the pyridine datum is ignored, the c∗ data

scale inversely with the square of the dielectric constant of the solvent, in agreement with

the trends observed for two poly(ionic liquids).1,7,25 As expected, for higher permittivities,

polymer chains are more expanded due to the larger fraction of dissociated counterions, see1

for a discussion.
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Figure 3a plots the viscosity of TBAPSS in various solvents using the same representation

as in figure 1b over the entire volume fraction range studied. An exponential dependence

can be observed for all solvents studied. The exponent is seen to depend on the solvent.

Solvents with lower dielectric constant such as pyridine (ϵ ≃ 12), 1-butanol (ϵ ≃ 18) and

ethanol (ϵ ≃ 28) display stronger exponents (∼ e26ϕ) than the high permittivity solvents

such as water (ϵ ≃ 80) or DMSO (ϵ ≃ 48), for which a weaker relation of ∼ e14ϕ is observed.

The scaling theory derives the Fuoss law under the assumption that the monomeric

friction coefficient ζ is concentration-independent, which is a good approximation for low

polymer concentrations. More generally, the viscosity of a polymer solution is expected to

follow: ηsp = ζ(ϕ)ηsp,0, where ηsp,0 is the specific viscosity with a constant monomeric friction

factor. Fujita’s free volume theory,26 predicts:

ζ(ϕ) ∼ e−1/f(ϕ) (2)

where f is the fractional free volume of the solution:

f = f 0
pϕ+ f ∗

s (ϕ)(1− ϕ) (3)

where f 0
p is the fractional free volume of the polymer and f ∗

s (ϕ) is the fractional free volume

of the solvent at a polymer volume fraction ϕ. Experimentally, f ∗
s (ϕ) is found to decrease

sharply from its value for the pure solvent case (f 0
s ) to a constant value (f+

s ) in solutions of

modest or high polymer volume fractions, see.26

Assuming that the solvent free volume term dominates in eq. 3 for the ϕ-range studied

here, and equating ηsp,0 with (c/c∗)1/2,27,28 we plot of ηsp(c
∗/c)1/2 as a function of 1/(1− ϕ)

in figure 3b, which approximately follows an exponential relationship, giving fractional free

volumes of f+
s ≃ 0.1 for the high dielectric constant solvents and f+

s ≃ 0.05 for the lower ϵ

solvents, see table 1. Eqs. 2-3 provide a rational for the result of figure 1b: the change in

ζ(ϕ) arises primarily from the decrease in the contribution of the solvent to the fractional
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free volume (f) of the solution, and is therefore independent of the counterion type for a

fixed value of ϕ.

Estimates for the fractional free volume of the solvents based on applying the Doolittle

equation to viscosity data29–32 are compiled in table 1. These f 0
s values are higher than the

f ∗
s values needed for Eq. 2-3 to account for our experimental results. This is consistent with

Fujita and Einaga’s finding that for concentrated neutral polymers f+
s /f

0
s ≃ 2.2− 4.5. The

ratios for our data H2O (f+
s /f

0
s ≃ 2.8), EG (f+

s /f
0
s ≃ 1.5), methanol (f+

s /f
0
s ≃ 6), ethanol

(f+
s /f

0
s ≃ 6.8) and butanol (f+

s /f
0
s ≃ 6.3)33 are in a similar range, thus suggesting free

volume effects as a plausible explanation for the exponential dependence of the viscosity.

However, we cannot rule out the influence of other mechanisms.

Measurements of the chain’s self diffusion coefficient (D) in concentrated polyelectrolyte

solutions would be useful towards understanding the results reported here. The influence of ζ

on D and ηsp cancels when the product ηspD is considered. For example, Lopez et al showed

that ηspD for NaPSS in DI water follows the scaling predictions well, even though ηsp and

D do not.9 Diffusion data for the TBAPSS system in different solvents could help resolve

whether the exponential term in eq. 1 arises from a ϕ-dependent ζ. Studies on the temper-

ature dependence of the viscosity of polyelectrolyte solutions, which we have been unable to

perform due to evaporation, would further allow us to understand the extent to which the

concentration dependence of ζ can be accounted for in terms of free volume. Presently, some

observations in this report can only be tentatively explained. The supporting information

includes a tabulation of all viscosity data, open for further analysis. We hope that the results

presented here will stimulate research on concentrated polyelectrolyte solutions.

Chemicals: NaPSS was purchased from Polymer Standard Service (Mainz, Germany).

Details of the molar mass determination can be found in19 and.9 TBABr was purchased from

Sigma-Aldrich. The solvents were purchased from Sigma-Aldrich or VWR. The solvents used

and their associated properties are provided in table 1. Deionised water was from a milli-Q
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Figure 3: a: Specific viscosity normalised by (c/c∗)1/2, as a function of polymer volume
fraction. b: same plot as part a but as a function of 1/(1 − ϕ), following eq. 3. Symbols
have the same meaning as in part a.

source, it had a conductivity of 2 µS/cm after being exposed to air. The Spectra/Por dialysis

tubings used had a MWCO of 12-15 kDa and were procured from VWR.

Polymer and solution preparation: TBAPSS was prepared by dialysing NaPSS with

a 50 molar excess of TBABr against DI water until the conductivity of the bath did not

increase beyond the value of DI water when exposed to atmosphere for at least 24 hours.

Solutions were freeze dried under a vacuum (∼ 0.4 mbar) and the resulting polymer was
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used to prepare the solutions. Conductivity measurements were carried out with a Mettler

Toledo S47 SevenMulti conductivity meter.

Table 1: Solvent properties and TBACMC parameters. Values for ϵ are taken from34 and
values of ρs Λ, the solvent density and conductivity at T = 25 ◦C are measured by us. ν is
the partial molar volume of TBAPSS. a extrapolated from BuOH, PrOH and EtOH. b We
use a value of ν =0.91 mL/g. For acetone and IPA, only solutions close to c∗ were studied,
the choice of ν does not have a significant effect on c∗.

Solvent ϵ [-] ρs [g/mL] Λ [µS/cm] ν [mL/g] c∗ [mM] f0
s [-] f+

s [-]
Water 80.1 0.997 2 0.9068 0.6 0.29 0.10
DMSO 47.2 1.1 0.5437 0.9105 0.53 - 0.091
Ethylene Glycol 41.4 1.11 0.0836 0.9197 1.7 0.16 0.10
Acetonitrile 36.6 0.786 0.1358 -b 2.9 - 0.067
Methanol 33 0.792 0.8225 -b 2.2 0.32a 0.058
Ethanol 25.3 0.789 0.1475 -b 3.8 0.338 0.050
Acetone 21 0.784 0.301 -b 10.1 - -
Isopropanol 20.2 0.786 0.0247 -b 9.4 - -
1-Butanol 17.8 0.810 0.1795 0.9178 7.2 0.34 0.056
Pyridine 13.3 0.982 1.4525 0.9065 9.9 - 0.053

Rheology: The rheology meaurements were carried out on a stress-controlled Kinexus-pro

rheometer (Netzsch). A cone-plate geometry with a 40 mm diameter (θ = 1◦, sample volume

≃ 0.35 mL) was used. A solvent trap filled with ≃ 400 µL of the respective solvent was used

to prevent evaporation. The measurements were carried out at 25 ◦C. The rheometer was

frequently calibrated by conducting a 20 minute torque mapping in air.

Density measurements: The density measurements were performed using the Anton Paar

DMA 5000 densitometer with a least count of 10−6 g cm−3. The accuracy of the instrument

was checked using DI water.

Rolling-ball viscosimetry: A Lovis 2000 M viscometer (Anton Paar) was used for samples

with low viscosity. The capillary diameter was 1.59 mm. Details on the calibration and data

analysis can be found in.19
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